Mock–gaussian Behaviour for Linear Statistics of Classical Compact Groups

نویسندگان

  • C P Hughes
  • Z Rudnick
چکیده

We consider the scaling limit of linear statistics for eigenphases of a matrix taken from one of the classical compact groups. We compute their moments and find that the first few moments are Gaussian, whereas the limiting distribution is not. The precise number of Gaussian moments depends upon the particular statistic considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mock-gaussian Behaviour

We show that the moments of the smooth counting function of a set of points encodes the same information as the n-level density of these points. If the points are the eigenvalues of matrices taken from the classical compact groups with Haar measure, then we show that the first few moments of the smooth counting function are Gaussian, while the distribution is not. The same phenomenon occurs for...

متن کامل

. PR ] 1 3 A ug 1 99 9 Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities

We discuss CLT for the global and local linear statistics of random matrices from classical compact groups. The main part of our proofs are certain combinatorial identities much in the spirit of works by Kac and Spohn.

متن کامل

Gaussian Lower Bound for the Information Bottleneck Limit

The Information Bottleneck (IB) is a conceptual method for extracting the most compact, yet informative, representation of a set of variables, with respect to the target. It generalizes the notion of minimal sufficient statistics from classical parametric statistics to a broader information-theoretic sense. The IB curve defines the optimal trade-off between representation complexity and its pre...

متن کامل

Borel Theorems for Random Matrices from the Classical Compact Symmetric Spaces

Abstract. We study random vectors of the form (Tr(AV ), . . . ,Tr(AV )), where V is a uniformly distributed element of a matrix version of a classical compact symmetric space, and the A are deterministic parameter matrices. We show that for increasing matrix sizes these random vectors converge to a joint Gaussian limit, and compute its covariances. This generalizes previous work of Diaconis et ...

متن کامل

‎Some‎ relations between ‎$‎L^p‎$‎-spaces on locally compact group ‎$‎G‎$ ‎and‎ double coset $Ksetminus G/H‎$

Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003